8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

General Description

The MAX1316-MAX1318/MAX1320-MAX1322/MAX1324MAX1326 14-bit, analog-to-digital converters (ADCs) offer two, four, or eight independent input channels. Independent track/hold (T/H) circuitry provides simultaneous sampling for each channel. The MAX1316/ MAX1317/MAX1318 have a 0 to +5 V input range with $\pm 6.0 \mathrm{~V}$ fault-tolerant inputs. The MAX1320/MAX1321/ MAX 1322 have a $\pm 5 \mathrm{~V}$ input range with $\pm 16.5 \mathrm{~V}$ fault-tolerant inputs. The MAX1324/MAX1325/MAX1326 have a $\pm 10 \mathrm{~V}$ input range with $\pm 16.5 \mathrm{~V}$ fault-tolerant inputs. These ADCs convert two channels in $2 \mu \mathrm{~s}$, and up to eight channels in $3.8 \mu \mathrm{~s}$, and have an 8 -channel throughput of 250ksps per channel. Other features include a 10 MHz T/H input bandwidth, internal clock, internal (+2.5 V) or external (+2.0 V to +3.0 V) reference, and powersaving modes.
A $16.6 \mathrm{MHz}, 14$-bit, bidirectional, parallel interface provides the conversion results and accepts digital configuration inputs.
These devices operate from $\mathrm{a}+4.75 \mathrm{~V}$ to +5.25 V analog supply and a separate +2.7 V to +5.25 V digital supply, and consume less than 50 mA total supply current.
These devices come in a 48-pin TQFP package and operate over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

Multiphase Motor Control
Power-Grid Synchronization
Power-Factor Monitoring and Correction
Vibration and Waveform Analysis

Selector Guide

PART	INPUT RANGE (V)	CHANNEL COUNT
MAX1316ECM	0 to +5	8
MAX1317ECM	0 to +5	4
MAX1318ECM	0 to +5	2
MAX1320ECM	± 5	8
MAX1321ECM	± 5	4
MAX1322ECM	± 5	2
MAX1324ECM	± 10	8
MAX1325ECM	± 10	4
MAX1326ECM	± 10	2

Pin Configurations and Typical Operating Circuits appear at end of data sheet.

Features

- 8-/4-/2-Channel, 14-Bit ADCs ± 1.5 LSB INL, ± 1 LSB DNL, No Missing Codes 90dBc SFDR, -86dBc THD, 76.5dB SINAD, 77dB SNR at 100kHz Input
- On-Chip T/H Circuit for Each Channel 10ns Aperture Delay 50ps Channel-to-Channel T/H Matching
- Fast Conversion Time

One Channel in $1.6 \mu \mathrm{~s}$
Two Channels in $1.9 \mu \mathrm{~s}$
Four Channels in $2.5 \mu \mathrm{~s}$
Eight Channels in $3.7 \mu \mathrm{~s}$

- High Throughput

526ksps/ch for One Channel 455ksps/ch for Two Channels 357ksps/ch for Four Channels 250ksps/ch for Eight Channels

- Flexible Input Ranges

0 to +5V (MAX1316/MAX1317/MAX1318)
$\pm 5 \mathrm{~V}$ (MAX1320/MAX1321/MAX1322)
$\pm 10 \mathrm{~V}$ (MAX1324/MAX1325/MAX1326)

- No Calibration Needed
- 14-Bit, High-Speed, Parallel Interface
- Internal or External Clock
- +2.5V Internal Reference or +2.0V to +3.0V

External Reference

- +5V Analog Supply, +3V to +5V Digital Supply 46mA Analog Supply Current (typ) 1.6mA Digital Supply Current (max) Shutdown and Power-Saving Modes
- 48-Pin TQFP Package ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$ Footprint)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX1316ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-6$
MAX1317ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-6$
MAX1318ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-6$
MAX1320ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-6$
MAX1321ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-6$
MAX1322ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-6$
MAX1324ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-6$
MAX1325ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-6$
MAX1326ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	$\mathrm{C} 48-6$

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

ABSOLUTE MAXIMUM RATINGS

REF+, COM, REF- to AGND......................-0.3V to (AVDD + 0.3V) D0-D13 to DGND-0.3V to (DVDD +0.3 V) Maximum Current into Any Pin Except $A V_{D D}, D_{D D}$, AGND, DGND
.$\pm 50 \mathrm{~mA}$ Continuous Power Dissipation

TQFP (derate $22.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................... 1818 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(A V_{D D}=+5 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {REFMS }}=+2.5 \mathrm{~V}\right.$ (external reference) $, \mathrm{C}_{\text {REF }}=\mathrm{C}_{\text {REFMS }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {REF }}+=$ CREF- $=0.1 \mu \mathrm{~F}$, CREF+-to-REF- $^{2}=2.2 \mu \mathrm{~F} \| 0.1 \mu \mathrm{~F}, \mathrm{C}$ COM $=2.2 \mu \mathrm{~F}\left\|0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{MSV}}=2.2 \mu \mathrm{~F}\right\| 0.1 \mu \mathrm{~F}$ (unipolar devices, MAX1316/ MAX1317/MAX1318), MSV = AGND (bipolar devices, MAX1320/MAX1321/MAX1322/MAX1324/MAX1325/MAX1326), fCLK $=10 \mathrm{MHz}$, 50% duty cycle, INTCLK/EXTCLK $=$ AGND (external clock), SHDN = DGND, $T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE (Note 1)						
Resolution	N		14			Bits
Integral Nonlinearity	INL	(Note 2)		± 0.8	± 2.0	LSB
Differential Nonlinearity	DNL	No missing codes (Note 2)		± 0.5	± 1	LSB
Offset Error		Unipolar devices			± 40	LSB
		Bipolar devices			± 40	
Offset Drift		Unipolar devices		-4		ppm/ ${ }^{\circ} \mathrm{C}$
		Bipolar devices		-4		
Channel Offset Matching		Unipolar devices between all channels		35	80	LSB
		Bipolar devices between all channels		25	60	
Gain Error		(Note 3)		± 8	± 40	LSB
Channel Gain-Error Matching		Between all channels			25	LSB
Gain Temperature Coefficient				3		ppm/ ${ }^{\circ} \mathrm{C}$
DYNAMIC PERFORMANCE (at fin $=100 \mathrm{kHz},-0.4 \mathrm{~dB} \mathrm{FS}$)						
Signal-to-Noise Ratio	SNR	Unipolar	74.5	76		dB
		Bipolar	75	76.5		
Signal-to-Noise and Distortion Ratio	SINAD	Unipolar	74.5	76		dB
		Bipolar	75	76.5		
Spurious-Free Dynamic Range	SFDR		83	93		dBc
Total Harmonic Distortion	THD			-90	-83	dBc
Channel-to-Channel Isolation			83			dB
ANALOG INPUTS (CH0-CH7)						
Input Voltage Range		MAX1316/MAX1317/MAX1318	0		+5	V
		MAX1320/MAX1321/MAX1322	-5		+5	
		MAX1324/MAX1325/MAX1326	-10		+10	

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{AV}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {REFMS }}=+2.5 \mathrm{~V}\right.$ (external reference) $, \mathrm{C}_{\text {REF }}=\mathrm{C}_{\text {REFMS }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {REF }}=$ CREF- $=0.1 \mu \mathrm{~F}$, CREF+-to-REF- $=2.2 \mu \mathrm{~F} \| 0.1 \mu \mathrm{~F}, \mathrm{C}$ Com $=2.2 \mu \mathrm{~F}\left\|0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{MSV}}=2.2 \mu \mathrm{~F}\right\| 0.1 \mu \mathrm{~F}$ (unipolar devices, MAX1316/ MAX1317/MAX1318), MSV = AGND (bipolar devices, MAX1320/MAX1321/MAX1322/MAX1324/MAX1325/MAX1326), fCLK $=10 \mathrm{MHz}$, 50% duty cycle, $\operatorname{INTCLK} / E X T C L K=A G N D$ (external clock), SHDN = DGND, $T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Current (Note 4)		MAX1316/MAX1317/MAX1318	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$		0.54	0.72	mA
			V IN $=0 \mathrm{~V}$	-0.157	-0.12		
		MAX1320/MAX1321/MAX1322	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$		0.29	0.39	
			$\mathrm{V}_{\text {IN }}=-5 \mathrm{~V}$	-1.16	-0.87		
		MAX1324/MAX1325/MAX1326	$\mathrm{V}_{\text {IN }}=+10 \mathrm{~V}$		0.56	0.74	
			$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}$	-1.13	-0.85		
Input Resistance (Note 4)		MAX1316/MAX1317/MAX1318			7.58		k ,
		MAX1320/MAX1321/MAX1322			8.66		
		MAX1324/MAX1325/MAX1326			14.26		
Input Capacitance					15		pF

External-Clock Throughput Rate (Note 5)	One channel	526	ksps
	Two channels	455	
	Four channels	357	
	Eight channels	250	
Internal-Clock Throughput Rate (Note 5)	One channel (INTCLK/EXTCLK $=$ AVDD)	526	ksps
	Two channels (INTCLK/EXTCLK $=$ AVDD)	455	
	Four channels (INTCLK/EXTCLK $=$ AVDD)	357	
	Eight channels (INTCLK/ $\overline{E X T C L K}=$ AVDD $)$	250	
Small-Signal Bandwidth		10	MHz
Full-Power Bandwidth		10	MHz
Aperture Delay		16	ns
Aperture Jitter		50	psRms
Aperture-Delay Matching		100	ps

INTERNAL REFERENCE						
REFMS Voltage	VREFMS		2.475	2.500	2.525	V
REF Voltage	$V_{\text {REF }}$		2.475	2.500	2.525	V
REF Temperature Coefficient				30		ppm $/{ }^{\circ} \mathrm{C}$

EXTERNAL REFERENCE (REFMS AND REF EXTERNALLY DRIVEN)

Input Current			-250		+250	$\mu \mathrm{A}$
REFMS Input Voltage Range	$V_{\text {REFMS }}$	Unipolar devices	2.0	2.5	3.0	V
REF Voltage Input Range	$V_{\text {REF }}$		2.0	2.5	3.0	V
REF Input Capacitance				15		pF
REFMS Input Capacitance				15		pF

Input-Voltage High	$V_{I H}$		$0.7 \times$ $D V_{D D}$	\vee

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

ELECTRICAL CHARACTERISTICS (continued)
$\left(A V_{D D}=+5 \mathrm{~V}, \mathrm{DV}\right.$ DD $=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {REFMS }}=+2.5 \mathrm{~V}$ (external reference), $\mathrm{C}_{\text {REF }}=\mathrm{C}_{\text {REFMS }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {REF }}+=$ CREF- $=0.1 \mu \mathrm{~F}$, CREF+-to-REF- $^{2}=2.2 \mu \mathrm{~F} \| 0.1 \mu \mathrm{~F}, \mathrm{C}$ COM $=2.2 \mu \mathrm{~F}\left\|0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{MSV}}=2.2 \mu \mathrm{~F}\right\| 0.1 \mu \mathrm{~F}$ (unipolar devices, MAX1316/ MAX1317/MAX1318), MSV = AGND (bipolar devices, MAX1320/MAX1321/MAX1322/MAX1324/MAX1325/MAX1326), fCLK $=10 \mathrm{MHz}$, 50% duty cycle, INTCLK/EXTCLK $=$ AGND (external clock), SHDN $=$ DGND, $T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
Input-Voltage Low	$V_{I L}$		MAX	UNITS
Input Hysteresis			$0.3 \times$	V
Input Capacitance	C_{IN}		15	mV
Input Current	I_{IN}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or DV		15

CLOCK-SELECT INPUT (INTCLK/EXTCLK)

Input-Voltage High				$\begin{gathered} 0.7 \times \\ A V_{D D} \end{gathered}$		V
Input-Voltage Low					$\begin{aligned} & 0.3 x \\ & A V_{D D} \end{aligned}$	V
DIGITAL OUTPUTS (D0-D13, $\overline{\text { EOC }}$, $\overline{\text { EOLC }}$)						
Output-Voltage High	VOH	ISOURCE $=0.8 \mathrm{~mA}$		$\begin{gathered} \text { DVDD - } \\ 0.6 \end{gathered}$		V
Output-Voltage Low	VOL	ISINK $=1.6 \mathrm{~mA}$			0.4	V
Tri-State Leakage Current		$\overline{\mathrm{RD}} \geq \mathrm{V}_{\mathrm{IH}}$ or $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$		0.06	1	$\mu \mathrm{A}$
Tri-State Output Capacitance		$\overline{\mathrm{RD}} \geq \mathrm{V}_{\mathrm{IH}}$ or $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$		15		pF
POWER SUPPLIES						
Analog-Supply Voltage	AV ${ }_{\text {DD }}$			4.75	5.25	V
Digital-Supply Voltage	DVDD			2.70	5.25	V
Analog-Supply Current	$I_{\text {AVDD }}$	MAX1316/MAX1317/MAX1318, all channels selected		46	51	mA
		MAX1320/MAX1321/MAX1322, all channels selected		46	51	
		MAX1324/MAX1325/MAX1326, all channels selected		46	51	
Digital-Supply Current (Note 6)	IDVDD	$\begin{aligned} & \text { CLOAD = } \\ & \text { 100pF } \end{aligned}$	MAX1316/MAX1317/MAX1318, all channels selected	1	1.6	mA
			MAX1320/MAX1321/MAX1322, all channels selected	1	1.6	
			MAX1324/MAX1325/MAX1326, all channels selected	1	1.6	
Shutdown Current (Note 7)	IAVDD	$\mathrm{V}_{\text {SHDN }}=\mathrm{DV}_{\text {DD }}, \mathrm{V}_{\text {CH }}=$ float			10	$\mu \mathrm{A}$
	IDVDD	$V_{\overline{R D}}=V_{\overline{W R}}=\mathrm{DV}_{\mathrm{DD}}, \mathrm{V}_{\text {SHDN }}=\mathrm{DV} \mathrm{V}_{\mathrm{DD}}$		0.1	2	
Power-Supply Rejection Ratio	PSRR	$\mathrm{AV}_{\mathrm{DD}}=+4.75 \mathrm{~V}$ to +5.75 V (Note 8)		50		dB

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to $\mathbf{+ 5 V}$ Analog Input Ranges

TIMING CHARACTERISTICS (Figures 3, 4, 5, 6 and 7) (Tables 1, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Time-to-First-Conversion Result	tconv	Internal clock		1.6	1.8	$\mu \mathrm{s}$
		External clock, Figure 6		16		Clock cycles
Time-to-Next-Conversion Result	tnext	Internal clock		0.3	0.36	$\mu \mathrm{s}$
		External clock, Figure 6	3			Clock cycles
CONVST Pulse-Width Low (Acquisition Time)	tACQ	(Note 9)	0.16		100	$\mu \mathrm{S}$
$\overline{\mathrm{CS}}$ Pulse Width	t2		30			ns
$\overline{\mathrm{RD}}$ Pulse-Width Low	t3		30			ns
$\overline{\mathrm{RD}}$ Pulse-Width High	t4		30			ns
$\overline{\text { WR Pulse-Width Low }}$	t5		30			ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$	t6		(Note 10)			ns
$\overline{\mathrm{WR}}$ to $\overline{\mathrm{CS}}$	${ }^{\text {7 }}$		(Note 10)			ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$	t8		(Note 10)			ns
$\overline{\mathrm{RD}}$ to $\overline{\mathrm{CS}}$	t9		(Note 10)			ns
Data-Access Time ($\overline{\mathrm{RD}}$ Low to Valid Data)	t_{10}				30	ns
Bus-Relinquish Time ($\overline{\mathrm{RD}}$ High)	t_{11}				30	ns
$\overline{\text { EOC Pulse Width }}$	t_{12}	Internal clock	80			ns
		External clock, Figure 6	1			Clock cycles
Input-Data Setup Time	t_{14}		10			ns
Input-Data Hold Time	t_{15}		10			ns
External-Clock Period	t_{16}		0.08		10.00	$\mu \mathrm{s}$
External-Clock High Period	t_{17}	Logic sensitive to rising edges	20			ns
External-Clock Low Period	t_{18}	Logic sensitive to rising edges	20			ns
External-Clock Frequency		(Note 11)	0.1		12.5	MHz
Internal-Clock Frequency			10			MHz
CONVST High to CLK Edge	t_{19}		20	(Note 12)		ns
$\overline{\mathrm{EOC}}$ Low to $\overline{\mathrm{RD}}$	t20			0		ns

Note 1: For the MAX1316/MAX1317/MAX1318, $\mathrm{V}_{\mathrm{IN}}=0$ to +5 V . For the MAX1320/MAX1321/MAX1322, $\mathrm{V}_{\mathrm{IN}}=-5 \mathrm{~V}$ to +5 V . For the MAX1324/MAX1325/MAX1326, VIN =-10V to +10V.
Note 2: All channel performance is guaranteed by correlation to a single channel test.
Note 3: Offset nulled.
Note 4: The analog input resistance is terminated to an internal bias point. Calculate the analog input current using:
$\mathrm{I}_{\mathrm{CH}_{-}}=\frac{\mathrm{V}_{\mathrm{CH}_{-}}-\mathrm{V}_{\mathrm{BIAS}}}{\mathrm{R}_{\mathrm{CH}_{-}}}$
for V_{CH} within the input voltage range.
Note 5: Throughput rate is given per channel. Throughput rate is a function of clock frequency ($\mathrm{fcLK}=10 \mathrm{MHz}$). See the Data Throughput section for more information.
Note 6: All analog inputs are driven with an FS 100kHz sine wave.

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to $\mathbf{+ 5 V}$ Analog Input Ranges

TIMING CHARACTERISTICS (Figures 3, 4, 5, 6 and 7) (Tables 1, 3) (continued)
Note 7: Shutdown current is measured with analog input floating. The large amplitude of the maximum shutdown current specification is due to automatic test equipment limitations.
Note 8: Defined as the change in positive full scale caused by $\pm 5 \%$ variation in the nominal supply voltage.
Note 9: CONVST must remain low for at least the acquisition period. The maximum acquisition time is limited by internal capacitor droop.
Note 10: $\overline{\mathrm{CS}}$-to- $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}-\mathrm{to}-\overline{\mathrm{RD}}$ pins are internally AND together. Setup and hold times do not apply.
Note 11: Minimum clock frequency is limited only by the internal T/H droop rate. Limit the time between the falling edge of CONVST to the falling edge of EOLC to a maximum of 0.25 ms .
Note 12: To avoid T/H droop degrading the sampled analog input signals, the first clock pulse should occur within $10 \mu \mathrm{~s}$ of the rising edge of CONVST, and have a minimum clock frequency of 100kHz.

Typical Operating Characteristics
$\left(A V_{D D}=+5 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {REFMS }}=+2.5 \mathrm{~V}\right.$ (external reference), see the Typical Operating Circuits section, $\mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz}, 50 \%$ duty cycle, $\operatorname{INTCLK} \overline{E X T C L K}=$ AGND (external clock), SHDN $=$ DGND, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

Typical Operating Characteristics (continued)

$\left(\mathrm{AV} \mathrm{VD}=+5 \mathrm{~V}, \mathrm{DV} \mathrm{DD}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{REFMS}}=+2.5 \mathrm{~V}\right.$ (external reference), see the Typical Operating Circuits section, $\mathrm{f} C L \mathrm{~K}=10 \mathrm{MHz}, 50 \%$ duty cycle, INTCLK/EXTCLK $=$ AGND (external clock), SHDN $=$ DGND, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INTERNAL REFERENCE VOLTAGE

INTERNAL REFERENCE VOLTAGE
vs. TEMPERATURE

OFFSET ERROR vs. SUPPLY VOLTAGE

GAIN ERROR vs. TEMPERATURE

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

Typical Operating Characteristics (continued)
$\left(A V_{D D}=+5 \mathrm{~V}, \mathrm{DV} D \mathrm{DD}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{REFMS}}=+2.5 \mathrm{~V}\right.$ (external reference), see the Typical Operating Circuits section, $\mathrm{f} C L K=10 \mathrm{MHz}, 50 \%$ duty cycle, INTCLK/EXTCLK $=$ AGND (external clock), SHDN $=\mathrm{DGND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

8－／4－／2－Channel，14－Bit，Simultaneous－Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and 0 to $\mathbf{+ 5 V}$ Analog Input Ranges

Typical Operating Characteristics（continued）

$\left(A V_{D D}=+5 \mathrm{~V}, ~ D V_{D D}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\mathrm{REFMS}}=+2.5 \mathrm{~V}\right.$（external reference），see the Typical Operating Circuits sec－ tion， $\mathrm{fCLK}=10 \mathrm{MHz}, 50 \%$ duty cycle，INTCLK／$\overline{\text { EXTCLK }}=$ AGND（external clock），SHDN $=$ DGND，$T_{A}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

Pin Description

PIN			NAME	FUNCTION
MAX1316 MAX1320 MAX1324	MAX1317 MAX1321 MAX1325	MAX1318 MAX1322 MAX1326		
1，15， 17	1，15， 17	1，15， 17	$A V_{D D}$	Analog Supply Input．$A V_{D D}$ is the power input for the analog section of the converter．Apply 4.75 V to 5.25 V to AV DD．Bypass AV DD to AGND（pin 14 to pin 15，pin 16 to pin 17，pin 1 to pin 2）with a $0.1 \mu \mathrm{~F}$ capacitor at each $A V_{D D}$ input．
2，3，14，16， 23	2，3，14，16， 23	2，3，14，16， 23	AGND	Analog Ground．AGND is the power return for $A V_{D D}$ ．Connect all AGNDs together．
4	4	4	CHO	Channel 0 Analog Input
5	5	5	CH1	Channel 1 Analog Input
6	6	6	MSV	Midscale Voltage Bypass．For the MAX1316／MAX1317／MAX1318， connect a $2.2 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ capacitor from MSV to AGND．For the MAX1320／MAX1321／MAX1322／MAX1324／MAX1325／MAX1326， connect MSV directly to AGND．
7	7	－	CH 2	Channel 2 Analog Input
8	8	－	CH3	Channel 3 Analog Input
9	－	－	CH4	Channel 4 Analog Input

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

PIN			NAME	FUNCTION
MAX1316 MAX1320 MAX1324	MAX1317 MAX1321 MAX1325	MAX1318 MAX1322 MAX1326		
10	-	-	CH5	Channel 5 Analog Input
11	-	-	CH6	Channel 6 Analog Input
12	-	-	CH7	Channel 7 Analog Input
13	13	13	$\frac{\text { INTCLK/ }}{\text { EXTCLK }}$	Clock-Mode Select Input. Use INTCLK/EXTCLK to select the internal or external conversion clock. Connect INTCLK/EXTCLK to AVDD to select the internal clock. Connect INTCLK/EXTCLK to AGND to use an external clock connected to CLK.
18	18	18	REFMs	Midscale Reference Bypass or Input. REFMS is the bypass point for an internally generated reference voltage. For the MAX1316/ MAX1317/MAX1318, connect a 0.1μ F capacitor from REFMs to AGND. For the MAX1320/MAX1321/MAX1322/MAX1324/ MAX1325/MAX1326, connect REF MS directly to REF and bypass with a $0.1 \mu \mathrm{~F}$ capacitor from REFMs to AGND.
19	19	19	REF	ADC Reference Bypass or Input. REF is the bypass point for an internally generated reference voltage. Bypass REF with a $0.01 \mu \mathrm{~F}$ capacitor to AGND. REF can be driven externally by a precision external voltage reference.
20	20	20	REF+	Positive Reference Bypass. REF+ is the bypass point for an internally generated reference voltage. Bypass REF+ with a $0.1 \mu \mathrm{~F}$ capacitor to AGND. Also bypass REF+ to REF- with a $2.2 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ capacitor.
21	21	21	COM	Reference Common Bypass. COM is the bypass point for an internally generated reference voltage. Bypass COM to AGND with a $2.2 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ capacitor.
22	22	22	REF-	Negative Reference Bypass. REF- is the bypass point for an internally generated reference voltage. Bypass REF- with a $0.1 \mu \mathrm{~F}$ capacitor to AGND. Also bypass REF- to REF+ with a $2.2 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ capacitor.
24	24	24	D0	Digital I/O Bit 0 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
25	25	25	D1	Digital I/O Bit 1 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
26	26	26	D2	Digital I/O Bit 2 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to $\mathbf{+ 5 V}$ Analog Input Ranges

Pin Description (continued)

PIN			NAME	FUNCTION
MAX1316 MAX1320 MAX1324	MAX1317 MAX1321 MAX1325	MAX1318 MAX1322 MAX1326		
27	27	27	D3	Digital I/O Bit 3 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
28	28	28	D4	Digital I/O Bit 4 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
29	29	29	D5	Digital I/O Bit 5 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
30	30	30	D6	Digital I/O Bit 6 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
31	31	31	D7	Digital I/O Bit 7 of 14 -Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
32	32	32	D8	Digital Out Bit 8 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
33	33	33	D9	Digital Out Bit 9 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
34	34	34	D10	Digital Out Bit 10 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
35	35	35	D11	Digital Out Bit 11 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
36	36	36	D12	Digital Out Bit 12 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
37	37	37	D13	Digital Out Bit 13 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
38	38	38	DVDD	Digital-Supply Input. Apply +2.7 V to +5.25 V to DV DD. Bypass DVDD to DGND with a $0.1 \mu \mathrm{~F}$ capacitor.
39	39	39	DGND	Digital-Supply GND. DGND is the power return for DVDD. Connect DGND to AGND at only one point (see the Layout, Grounding, and Bypassing section).
40	40	40	$\overline{\text { EOC }}$	End-of-Conversion Output. $\overline{\mathrm{EOC}}$ goes low to indicate the end of a conversion. $\overline{\text { EOC }}$ returns high after one clock period.

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

Pin Description (continued)

PIN			NAME	FUNCTION
MAX1316 MAX1320 MAX1324	MAX1317 MAX1321 MAX1325	MAX1318 MAX1322 MAX1326		
41	41	41	EOLC	End-of-Last-Conversion Output. EOLC goes low to indicate the end of the last conversion. EOLC returns high when CONVST goes low for the next conversion sequence.
42	42	42	$\overline{\mathrm{RD}}$	Read Input. When $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ go low, the device initiates a read command of the parallel data buses, D0-D13. D0-D13 are high impedance while either $\overline{\mathrm{RD}}$ or $\overline{\mathrm{CS}}$ is high.
43	43	43	$\overline{\mathrm{WR}}$	Write Input. The write command initiates when $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ go low. A write command loads the configuration byte on D0-D7.
44	44	44	$\overline{\mathrm{CS}}$	Chip-Select Input. Pulling $\overline{\mathrm{CS}}$ low activates the digital interface, D0-D13 are high impedance while either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$ is high.
45	45	45	CONVST	Convert-Start Input. Driving CONVST high places the device in hold mode and initiates the conversion process. The analog inputs are sampled on the rising edge of CONVST. When CONVST is low, the analog inputs are tracked.
46	46	46	CLK	External-Clock Input. CLK accepts an external-clock signal up to 15 MHz . Connect CLK to DGND for internally clocked conversions. To select external-clock mode, set INTCLK/EXTCLK $=0$.
47	47	47	SHDN	Shutdown Input. Set SHDN = 0 for normal operation. Set SHDN $=1$ for shutdown mode.
48	48	48	ALLON	Enable-All-Channels Input. Drive ALLON high to enable all input channels. When ALLON is low, only input channels selected as active are powered. Select channels as active using the configuration register.
-	9-12	7-12	I.C.	Internally Connected. Connect I.C. to AGND. For factory use only.

8－／4－／2－Channel，14－Bit，Simultaneous－Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and 0 to $\mathbf{+ 5 V}$ Analog Input Ranges

Figure 1．Functional Diagram

Detailed Description

The MAX1316－MAX1318／MAX1320－MAX1322／MAX1324－ MAX1326 are 14－bit ADCs．They offer two，four，or eight （independently selectable）input channels，each with its own T／H circuitry．Simultaneous sampling of all active channels preserves relative phase information，making these devices ideal for motor control and power monitor－ ing．These devices are available with 0 to $+5 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and $\pm 10 \mathrm{~V}$ input ranges．The 0 to +5 V devices feature $\pm 6 \mathrm{~V}$ fault－tolerant inputs．The $\pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$ devices feature $\pm 16.5 \mathrm{~V}$ fault－tolerant inputs．Two channels convert in $2 \mu \mathrm{~s}$ ； all eight channels convert in $3.8 \mu \mathrm{~s}$ ，with a maximum 8－ channel throughput of 263 ksps per channel．Internal or external reference and internal－or external－clock capabil－ ity offer great flexibility and ease of use．A write－only con－ figuration register can mask out unused channels，and a shutdown feature reduces power．A $16.6 \mathrm{MHz}, 14$－bit，par－ allel data bus outputs the conversion result．Figure 1 shows the functional diagram of these devices．

Analog Inputs
T／H
To preserve phase information across these multichan－ nel devices，each input channel has a dedicated T／H amplifier．
Use a low－input source impedance to minimize gain－ error harmonic distortion．The time required for the T／H to acquire an input signal depends on the input source impedance．If the input signal＇s source impedance is high，the acquisition time lengthens and more time must be allowed between conversions．The acquisition time（ t_{1} ）is the maximum time the device takes to acquire the signal．Use the following formula to calcu－ late acquisition time：

$$
t_{1}=10(R s+R I N) \times 6 p F
$$

where $R_{I N}=2.2 k \Omega, R_{S}=$ the input signal＇s source impedance，and t_{1} is never less than 180ns．A source impedance of less than 100Ω does not significantly affect the ADC＇s performance．

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

To improve the input-signal bandwidth under AC conditions, drive the input with a wideband buffer ($>50 \mathrm{MHz}$) that can drive the ADC's input capacitance and settle quickly. For example, the MAX4265 can be used for +5 V unipolar devices, or the MAX4350 can be used for $\pm 5 \mathrm{~V}$ bipolar inputs.
The T/H aperture delay is typically 13 ns . The aperturedelay mismatch between T / Hs of 50 ps allows the relative phase information of up to eight different inputs to be preserved. Figure 2 shows a simplified equivalent input circuit, illustrating the ADC's sampling architecture.

Input Bandwidth

The input tracking circuitry has a 12 MHz small-signal bandwidth, making it is possible to digitize high-speed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. To avoid high-frequency signals being aliased into the frequency band of interest, anti-alias filtering is recommended.

Input Range and Protection

These devices provide $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, or 0 to +5 V analog input voltage ranges. Figure 2 shows the equivalent input circuit. Overvoltage protection circuitry at the analog input provides $\pm 16.5 \mathrm{~V}$ fault protection for the bipolar input devices and $\pm 6.0 \mathrm{~V}$ fault protection for the unipolar input devices. This fault-protection circuit limits the current going into or out of the device to less than 50 mA , providing an added layer of protection from momentary overvoltage or undervoltage conditions at the analog input.

Figure 2. Typical Input Circuit

Power-Saving Modes

Shutdown Mode
During shutdown, the analog and digital circuits in the device power down and the device draws less than $100 \mu \mathrm{~A}$ from $A V_{D D}$, and less than $100 \mu \mathrm{~A}$ from DVDD. Select shutdown mode using the SHDN input. Set SHDN high to enter shutdown mode. After coming out of shutdown, allow a 1 ms wake-up time before making the first conversion. When using an external clock, apply at least 20 clock cycles with CONVST high before making the first conversion. When using internal-clock mode, wait at least $2 \mu s$ before making the first conversion.

ALLON

ALLON is useful when some of the analog input channels are selected (see the Configuration Register section). Drive ALLON high to power up all input channel circuits, regardless of whether they are selected as active by the configuration register. Drive ALLON low or connect to ground to power only the input channels selected as active by the configuration register, saving 2 mA per channel (typ). The wake-up time for any channel turned on with the configuration register is $2 \mu \mathrm{~s}$ (typ) when ALLON is low. The wake-up time with ALLON high is only $0.01 \mu \mathrm{~s}$. New configuration-register information does not become active until the next CONVST falling edge. Therefore, when using software to control power states (ALLON = 0), pulse CONVST low once before applying the actual CONVST signal (Figure 3). With an external clock, apply at least 15 clock cycles before the second CONVST. If using internal-clock mode, wait at least $1.5 \mu \mathrm{~s}$ or until the first $\overline{\mathrm{EOC}}$ before generating the second CONVST.

Table 1. Conversion Times Using the Internal Clock

NUMBER OF CHANNELS	INTERNAL-CLOCK CONVERSION TIME
1	1.6
2	1.9
3	2.2
4	2.5
5	2.8
6	3.1
7	3.4
8	3.7

8－／4－／2－Channel，14－Bit，Simultaneous－Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and 0 to $\mathbf{+ 5 \mathrm { V }}$ Analog Input Ranges

Figure 3．Software Channel Wake－Up Timing（ALLON＝0）

Clock Modes

These devices provide an internal clock of 10 MHz （typ）．Alternatively，an external clock can be used．

Internal Clock
Internal－clock mode frees the microprocessor from the burden of running the ADC conversion clock．For internal－ clock operation，connect INTCLK／EXTCLK to AVDD and connect CLK to DGND．Table 1 illustrates the total con－ version time using internal－clock mode．

External Clock For external－clock operation，connect INTCLK／EXTCLK to AGND and connect an external－clock source to CLK． Note that INTCLK／EXTCLK is referenced to the analog power supply，$A V D D$ ．The external－clock frequency can be up to 15 MHz ，with a duty cycle between 30% and 70% ．Clock frequencies of 100 kHz and lower can be used，but the droop in the T／H circuits reduce linearity．

Selecting an Input Buffer

Most applications require an input buffer to achieve 14－ bit accuracy．Although slew－rate and bandwidth are important，the most critical specification is settling time． The sampling requires a relatively brief sampling inter－ val of 150ns．At the beginning of the acquisition，the internal sampling capacitor array connects to CH_{-}（the amplifier output），causing some output disturbance． Ensure the amplifier is capable of settling to at least 14－ bit accuracy during this interval．Use a low－noise，low－ distortion，wideband amplifier（such as the MAX4350 or

MAX4265），which settles quickly and is stable with the ADC＇s capacitive load（in parallel with any bypass capacitors on the analog inputs）．

Applications Section

Digital Interface
The bidirectional，parallel，digital interface sets the 8－bit configuration register（see the Configuration Register section）and outputs the 14－bit conversion result．The interface includes the following control signals：chip select $(\overline{\mathrm{CS}})$ ，read $(\overline{\mathrm{RD}})$ ，write（ $\overline{\mathrm{WR}})$ ，end of conversion （ $\overline{\mathrm{EOC}}$ ），end of last conversion（ $\overline{\mathrm{EOLC}}$ ），convert start （CONVST），shutdown（SHDN），all on（ALLON），internal－ clock select（INTCLK／EXTCLK），and external－clock input （CLK）．Figures 4，5，6，7，Table 4，and the Timing Characteristics section show the operation of the inter－ face．D0－D7 are bidirectional，and D8－D13 are output only．All bits are high impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$ ．

Configuration Register

Enable channels as active by writing to the configuration register through I／O lines D0－D7（Table 2）．The bits in the configuration register map directly to the channels，with D0 controlling channel zero，and D7 controlling channel seven．Setting any bit high activates the corresponding input channel，while resetting any bit low deactivates the corresponding channel．Devices with fewer than eight channels contain some bits that have no function．

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

Table 2. Configuration Register

PART NO.	STATE	BIT/CHANNEL							
		DO/CHO	D1/CH1	D2/CH2	D3/CH3	D4/CH4	D5/CH5	D6/CH6	D7/CH7
MAX1316 MAX1320 MAX1324	ON	1	1	1	1	1	1	1	1
	OFF	0	0	0	0	0	0	0	0
MAX1317 MAX1321 MAX1325	ON	1	1	1	1	NA	NA	NA	NA
	OFF	0	0	0	0	NA	NA	NA	NA
MAX1318 MAX1322 MAX1326	ON	1	1	NA	NA	NA	NA	NA	NA
	OFF	0	0	NA	NA	NA	NA	NA	NA

$N A=$ Not applicable.

To write to the configuration register, pull $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ low, load bits D0-D7 onto the parallel bus, and force WR high. The data are latched on the rising edge of WR (Figure 4). It is possible to write to the configuration register at any point during the conversion sequence; however, it is not active until the next convert-start signal. At power-up, write to the configuration register to select the active channels before beginning a conversion. Shutdown does not change the configuration register. See the Shutdown Mode and the ALLON sections for information about using the configuration register for power saving.

Starting a Conversion

To start a conversion using internal-clock mode, pull CONVST low for at least the acquisition time (t_{1}). The T/H acquires the signal while CONVST is low, and conversion begins on the rising edge of CONVST. An end-of-conversion signal (EOC) pulses low when the first result becomes available, and for each subsequent result until the end of the conversion cycle. The end-of-last-conversion signal ($\overline{\mathrm{EOLC}}$) goes low when the last conversion result is available (Figures 5, 6, and 7).
To start a conversion using external-clock mode, pull CONVST low for at least the acquisition time (t 1). The T/H acquires the signal while CONVST is low, and conversion begins on the rising edge of CONVST. Apply an external clock to CLK. To avoid T/H droop degrading the sampled analog input signals, the first clock pulse should occur within $10 \mu \mathrm{~s}$ from the rising edge of CONVST, and have a minimum clock frequency of 100 kHz . The first conversion result is available for read on the rising edge of the 17th clock cycle, and subsequent conversions after every third clock cycle thereafter (Figures 5, 6, and 7).

Figure 4. Write Timing
In both internal- and external-clock modes, CONVST must be held high until the last conversion result is read. For best operation, the rising edge of CONVST must be a clean, high-speed, low-jitter digital signal.
Table 3 shows the total throughput as a function of the clock frequency and the number of channels selected for conversion. The calculations use the nominal speed of the internal clock (10 MHz) and a 200 ns CONVST pulse width.

8－／4－／2－Channel，14－Bit，Simultaneous－Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and 0 to $\mathbf{+ 5 V}$ Analog Input Ranges

Data Throughput

The data throughput（fTH）of the MAX1316－MAX1318／ MAX1320－MAX1322／MAX1324－MAX1326 is a function of the clock speed（fclk）．In internal－clock mode，fclk＝ 10 MHz ．In external－clock mode， $100 \mathrm{kHz} \leq \mathrm{fcLK} \leq$ 12.5 MHz ．When reading during conversion（Figures 5 and 6），calculate fTH as follows：

$$
\mathrm{f}_{\mathrm{TH}}=\frac{1}{\mathrm{t}_{\mathrm{QUIET}}+\frac{16+3 \times(\mathrm{N}-1)+1}{\mathrm{f}_{\mathrm{CLK}}}}
$$

where N is the number of active channels and tQUIET includes acquistion time tACQ．tQUIET is the period of bus inactivity before the rising edge of CONVST．Typically use tQUIET $=$ tACQ +50 ns ，and prevent disturbance on the output bus from corrupting signal acquistion．See the Starting a Conversion section for more information．

Reading a Conversion Result
Reading During a Conversion
Figures 5 and 6 show the interface signals for initiating a read operation during a conversion cycle．These figures show two channels selected for conversion．If more chan－ nels are selected，the results are available successively every third clock cycle．$\overline{\mathrm{CS}}$ can be low at all times；it can be low during the $\overline{\mathrm{RD}}$ cycles，or it can be the same as $\overline{\mathrm{RD}}$ ．
After initiating a conversion by bringing CONVST high， wait for EOC to go low（about $1.6 \mu \mathrm{~s}$ in internal－clock mode or 17 clock cycles in external－clock mode）before reading the first conversion result．Read the conversion result by bringing $\overline{\mathrm{RD}}$ low，thus latching the data to the parallel digital－output bus．Bring $\overline{\mathrm{RD}}$ high to release the digital bus．Wait for the next falling edge of EOC（about 300ns in internal－clock mode or three clock cycles in external－clock mode）before reading the next result． When the last result is available，$\overline{\text { EOLC }}$ goes low．

Table 3．Throughput vs．Channels Sampled（tQUIET $=\mathbf{t} A C Q=200 \mathrm{~ns}, \mathrm{fCLK}=10 \mathrm{MHz}$ ）

CHANNELS SAMPLED $\mathbf{(N)}$	CLOCK CYCLES UNTIL LAST RESULT	CLOCK CYCLE FOR READING LAST CONVERSION	TOTAL CONVERSION TIME（ns）	SAMPLES PER SECOND （ksps）	THROUGHPUT PER CHANNEL （ksps）
1	16	1	1900	526	526
2	19	1	2200	909	455
3	22	1	2500	1200	400
4	25	1	2800	1429	357
5	28	1	3100	1613	323
6	31	1	3400	1765	294
7	34	1	3700	1892	270
8	37	1	4000	2000	250

Figure 5．Read During Conversion－Two Channels Selected，Internal Clock

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

Figure 6. Read During Conversion—Two Channels Selected, External Clock

Figure 7. Reading After Conversion-Eight Channels Selected, External Clock

8－／4－／2－Channel，14－Bit，Simultaneous－Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and 0 to $\mathbf{+ 5 V}$ Analog Input Ranges

Reading After Conversion

Figure 7 shows the interface signals for a read operation after a conversion with all eight channels enabled．At the falling edge of EOLC，on the 38th clock pulse after the ini－ tiation of a conversion，driving $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low places the first conversion result onto the parallel bus，which can be latched on the rising edge of $\overline{\mathrm{RD}}$ ．Successive low pulses of $\overline{\mathrm{RD}}$ place the successive conversion results onto the bus．Pulse CONVST low to initiate a new conversion．

Power－Up Reset

At power－up，all channels are selected for conversion （see the Configuration Register section）．After applying power，allow a 1.0 ms wake－up time to elapse before ini－ tiating the first conversion．Then，hold CONVST high for at least $2.0 \mu \mathrm{~s}$ after the wake－up time is complete．If using an external clock，apply 20 clock pulses to CLK with CONVST high before initiating the first conversion．

Reference

Internal Reference

The internal－reference circuits provide for analog input voltages of 0 to +5 V unipolar（MAX1316／MAX1317／ MAX1318），$\pm 5 \mathrm{~V}$ bipolar（MAX1320／MAX1321／MAX1322）， or $\pm 10 \mathrm{~V}$ bipolar（MAX1324／MAX1325／MAX1326）．Install external capacitors for reference stability，as indicated in Table 4，and as shown in the Typical Operating Circuits．

External Reference

Connect a +2.0 V to +3.0 V external reference at REFMS and／or REF．When connecting an external reference，the input impedance is typically $5 \mathrm{k} \Omega$ ．The external reference must be able to drive $200 \mu \mathrm{~A}$ of current and have a low output impedance．For more information about using external references see the Transfer Functions section．

Layout，Grounding，and Bypassing
For best performance use PC boards with ground planes．Board layout should ensure that digital and analog signal lines are separated from each other．Do not run analog and digital lines parallel to one another （especially clock lines），or do not run digital lines underneath the ADC package．Figure 8 shows the rec－ ommended system ground connections when not using a ground plane．A single－point analog ground（star ground point）should be established at AGND，sepa－ rate from the logic ground．All other analog grounds and DGND should be connected to this ground．

Figure 8．Power－Supply Grounding and Bypassing

Table 4．Reference Bypass Capacitors

LOCATION	INPUT VOLTAGE RANGE			
	UNIPOLAR（ $\boldsymbol{\mu} \mathbf{F})$	BIPOLAR（ $\boldsymbol{\mu}$ F）		
MSV bypass capacitor to AGND	$2.2 \\| 0.1$	NA		
REF MS bypass capacitor to AGND	0.01	0.01 （connect REFMS to REF）		
REF bypass capacitor to AGND	0.01	0.01 （connect REFMS to REF）		
REF＋bypass capacitor to AGND	0.1	0.1		
REF＋to REF－capacitor	$2.2 \\| 0.1$	$2.2 \\| 0.1$		
REF－bypass capacitor to AGND	0.1	0.1		
COM bypass capacitor to AGND	$2.2 \\| 0.1$	$2.2 \\| 0.1$		

NA＝Not applicable（connect MSV directly to AGND）．

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

No other digital system ground should be connected to this single-point analog ground. The ground return to the power supply for this ground should be low impedance and as short as possible for noise-free operation. High-frequency noise in the VDD power supply may affect the high-speed comparator in the ADC. Bypass these supplies to the single-point analog ground with $0.1 \mu \mathrm{~F}$ and $2.2 \mu \mathrm{~F}$ bypass capacitors close to the device. If the +5 V power supply is very noisy, a ferrite bead can be connected as a lowpass filter, as shown in Figure 8.

Transfer Functions
 Bipolar $\pm 10 \mathrm{~V}$ Devices

Table 5 and Figure 9 show the two's complement transfer function for the MAX1324/MAX1325/MAX1326 with a $\pm 10 \mathrm{~V}$ input range. The full-scale input range (FSR) is eight times the voltage at REF. The internal +2.500 V reference gives a +20 V FSR, while an external +2 V to +3 V reference allows an FSR of +16 V to +24 V , respectively. Calculate the LSB size using the following equation:

$$
\mathrm{LSB}=\frac{8 \times \mathrm{V}_{\mathrm{REF}}}{2^{14}}
$$

This equals 1.2207 mV with $\mathrm{a}+2.5 \mathrm{~V}$ internal reference.

Table 5. $\pm 10 \mathrm{~V}$ Bipolar Code Table

TWO'S COMPLEMENT BINARY OUTPUT CODE	DECIMAL EQUIVALENT OUTPUT $\left(\right.$ CODE $\left._{\mathbf{1 0}}\right)$	INPUT VOLTAGE (V) $\left(\mathbf{V}_{\text {REF }}=\mathbf{2 . 5 V}\right.$, $\left.\mathbf{V}_{\text {MSV }}=\mathbf{0 V}\right)$
01111111111111 0×1 FFF	8191	9.9994 $\pm 0.5 \mathrm{LSB}$
01111111111110 $0 \times 1 \mathrm{FFE}$	8190	9.9982 $\pm 0.5 \mathrm{LSB}$
000000 0000 0001 0×0001	1	0.0018 $\pm 0.5 \mathrm{LSB}$
00000000000000 0×0000	0	0.0006 $\pm 0.5 \mathrm{LSB}$
11111111111111 $0 \times 3 F F F$	-1	-0.0006 $\pm 0.5 \mathrm{LSB}$
10000000000001 0×2001	-8191	-9.9982 $\pm 0.5 \mathrm{LSB}$
10000000000000 0×2000	-8192	-9.9994 $\pm 0.5 \mathrm{LSB}$

The input range is centered about $\mathrm{V}_{\mathrm{MSV}}$. Normally, MSV = AGND, and the input is symmetrical about zero. For a custom midscale voltage, drive MSV with an external voltage source. Noise present on MSV directly couples into the ADC result. Use a precision, low-drift voltage reference with adequate bypassing to prevent MSV from degrading ADC performance. For maximum FSR, be careful not to violate the absolute maximum voltage ratings of the analog inputs when choosing $V_{M S V}$.
Determine the input voltage as a function of $V_{R E F}$, $V_{\text {MSV }}$, and the output code in decimal using the following equation:

$$
\mathrm{V}_{\mathrm{CH}_{-}}=\mathrm{LSB} \times \mathrm{CODE}_{10}+\mathrm{V}_{\mathrm{MSV}}
$$

Bipolar $\pm 5 V$ Devices

Table 6 and Figure 10 show the two's complement transfer function for the MAX1320/MAX1321/MAX1322 with $a \pm 5 \mathrm{~V}$ input range. The FSR is four times the voltage at REF. The internal +2.500 V reference gives a +10 V FSR, while an external +2 V to +3 V reference allows an FSR of +8 V to +12 V , respectively. Calculate the LSB size using the following equation:

$$
\mathrm{LSB}=\frac{4 \times V_{R E F}}{2^{14}}
$$

This equals 0.6104 mV when using the internal reference.

Figure 9. $\pm 10 \mathrm{~V}$ Bipolar Transfer Function

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to $\mathbf{+ 5 V}$ Analog Input Ranges

Figure 10. $\pm 5 \mathrm{~V}$ Bipolar Transfer Function
The input range is centered about VMSV. Normally, MSV = AGND, and the input is symmetrical about zero. For a custom midscale voltage, drive MSV with an external voltage source. Noise present on MSV directly couples into the ADC result. Use a precision, low-drift voltage reference with adequate bypassing to prevent MSV from degrading ADC performance. For maximum FSR, be careful not to violate the absolute maximum voltage ratings of the analog inputs when choosing $V_{M S V}$. Determine the input voltage as a function of $V_{\text {REF }}, \mathrm{V}_{\text {MSV }}$, and the output code in decimal using the following equation:

$$
V_{C H}=\operatorname{LSB} \times \mathrm{CODE}_{10}+\mathrm{V}_{\mathrm{MSV}}
$$

Unipolar 0 to +5 V Devices
Table 7 and Figure 11 show the offset binary transfer function for the MAX1316/MAX1317/MAX1318 with a 0 to +5 V input range. The FSR is two times the voltage at REF. The internal +2.500 V reference gives a +5 V FSR, while an external +2 V to +3 V reference allows an FSR of +4 V to +6 V , respectively. Calculate the LSB size using the following equation:

$$
\mathrm{LSB}=\frac{2 \times \mathrm{V}_{\mathrm{REF}}}{2^{14}}
$$

This equals 0.3052 mV when using the internal reference.

Table 6. $\pm 5 \mathrm{~V}$ Bipolar Code Table

TWO'S COMPLEMENT BINARY OUTPUT CODE	DECIMAL EQUIVALENT OUTPUT (CODE 10)	INPUT VOLTAGE (V) ($\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{MSV}}=0 \mathrm{~V}$)
$\begin{gathered} 01111111111111 \\ 0 \times 1 F F F \end{gathered}$	8191	$\begin{gathered} 4.9997 \\ \pm 0.5 \text { LSB } \end{gathered}$
01111111111110 0x1FFE	8190	$\begin{gathered} 4.9991 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$
00000000000001 0×0001	1	$\begin{gathered} 0.0009 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$
$\begin{gathered} 00000000000000 \\ 0 \times 0000 \end{gathered}$	0	$\begin{gathered} 0.0003 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$
$\begin{gathered} 11111111111111 \\ 0 \times 3 F F F \end{gathered}$	-1	$\begin{gathered} -0.0003 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$
10000000000001 0×2001	-8191	$\begin{gathered} -4.9991 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$
10000000000000	-8192	$\begin{aligned} & -4.9997 \\ & \pm 0.5 \mathrm{LSB} \end{aligned}$

Table 7. 0 to +5 V Unipolar Code Table

BINARY OUTPUT CODE	DECIMAL EQUIVALENT OUTPUT (CODE 10)	$\begin{gathered} \text { INPUT } \\ \text { VOLTAGE (V) } \\ \left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REFMS }}\right. \\ =2.5 \mathrm{~V}) \end{gathered}$
$\begin{gathered} 11111111111111 \\ 0 \times 3 F F F \end{gathered}$	16383	$\begin{gathered} 4.9998 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$
$\begin{gathered} 11111111111110 \\ 0 \times 3 F F E \end{gathered}$	16382	$\begin{gathered} 4.9995 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$
$\begin{gathered} 10000000000001 \\ 0 \times 2001 \end{gathered}$	8193	$\begin{gathered} 2.5005 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$
$\begin{gathered} 10000000000000 \\ 0 \times 2000 \end{gathered}$	8192	$\begin{gathered} 2.5002 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$
01111111111111 0x1FFF	8191	$\begin{gathered} 2.4998 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$
$\begin{gathered} 00000000000001 \\ 0 \times 0001 \end{gathered}$	1	$\begin{gathered} 0.0005 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$
$\begin{gathered} 00000000000000 \\ 0 \times 0000 \end{gathered}$	0	$\begin{gathered} 0.0002 \\ \pm 0.5 \mathrm{LSB} \end{gathered}$

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

Figure 11. 0 to +5 V Unipolar Transfer Function
The input range is centered about $\mathrm{V}_{\mathrm{MSV}}$, which is internally set to +2.500 V . For a custom midscale voltage, drive REFMS with an external voltage source and MSV will follow REFMS. Noise present on MSV or REFMS directly couples into the ADC result. Use a precision, low-drift voltage reference with adequate bypassing to prevent MSV from degrading ADC performance. For maximum FSR, be careful not to violate the absolute maximum voltage ratings of the analog inputs when choosing $\mathrm{V}_{\mathrm{MSV}}$. Determine the input voltage as a function of $\mathrm{V}_{\text {REF }}, \mathrm{V}_{\mathrm{MSV}}$, and the output code in decimal using the following equation:

$$
\mathrm{V}_{\mathrm{CH}}=\mathrm{LSB} \times \mathrm{CODE}_{10}+\left(\mathrm{V}_{\mathrm{MSV}}-2.500 \mathrm{~V}\right)
$$

Definitions

Integral Nonlinearity
Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. For these devices, this straight line is a line drawn between the end points of the transfer function, once offset and gain errors have been nullified.

Differential Nonlinearity

Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1 LSB. For these devices, the DNL of each digital output code is measured and the worst-case value is reported in the Electrical Characteristics table. A DNL error specification of less than ± 1 LSB guarantees no missing codes and a monotonic transfer function.

Unipolar Offset Error

For the unipolar MAX1316/MAX1317/MAX1318, the ideal zero-scale transition from 0×0000 to 0×0001 occurs at 1 LSB (see Figure 11). The unipolar offset error is the amount of deviation between the measured zero-scale transition point and the ideal zero-scale transition point.

Bipolar Offset Error

For the bipolar MAX1320/MAX1321/MAX1322/ MAX1324/MAX1325/MAX1326, the ideal zero-point transition from 0x3FFF to 0×0000 occurs at MSV, which is usually connected to ground (see Figures 9 and 10). The bipolar offset error is the amount of deviation between the measured zero-point transition and the ideal zero-point transition.

Gain Error

The ideal full-scale transition from 0×1 FFE to 0×1 FFF occurs at 1 LSB below full scale (see the Transfer Functions section). The gain error is the amount of deviation between the measured full-scale transition point and the ideal full-scale transition point, once offset error has been nullified.

Signal-to-Noise Ratio
For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization noise error only and results directly from the ADC's resolution (N bits):

$$
\text { SNR }=(6.02 \times N+1.76) \mathrm{dB}
$$

where $N=14$ bits.
In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

$\begin{gathered}\text { Signal-to-Noise Plus Distortion }\end{gathered}$
Signal-to-noise plus distortion (SINAD) is the ratio of th
fundamental input frequency's RMS amplitude to t
RMS equivalent of all the other ADC output signals:
SINAD(dB) $=20 \times \log \left[\frac{\text { Signal }_{\text {RMS }}}{\left(\text { Noise }+ \text { Distortion) }{ }_{\text {RMS }}\right.}\right]$
Effective Number of Bits The effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. With an input range equal to the fullscale range of the ADC, calculate the ENOB as follows:

$$
\mathrm{ENOB}=\frac{\text { SINAD }-1.76}{6.02}
$$

Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

$$
\mathrm{THD}=20 \times \log \left[\frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}}}{V_{1}}\right]
$$

where V_{1} is the fundamental amplitude and V_{2} through V_{5} are the 2nd- through 5th-order harmonics.

Spurious-Free Dynamic Range
Spurious-free dynamic range (SFDR) is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next-largest frequency component.

Aperture Delay

Aperture delay ($\mathrm{taD}_{\mathrm{A}}$) is the time delay from the sampling clock edge to the instant when an actual sample is taken.

Aperture Jitter

Aperture Jitter (tAJ) is the sample-to-sample variation in aperture delay.

Channel-to-Channel Isolation
Channel-to-channel isolation indicates how well each analog input is isolated from the other channels. Channel-to-channel isolation is measured by applying DC to channels 1 to 7 , while a -0.5 dBFS sine wave is applied to channel 0 . A 100 kHz FFT is taken for channel 0 and channel 1. Channel-to-channel isolation is expressed in dB as the power ratio of the two 100 kHz magnitudes.

Small-Signal Bandwidth

A small -20dBFS analog input signal is applied to an ADC in a manner that ensures that the signal's slew rate does not limit the ADC's performance. The input frequency is then swept up to the point where the amplitude of the digitized conversion result has decreased 3dB.

Full-Power Bandwidth
A large -0.5 dBFS analog input signal is applied to an ADC, and the input frequency is swept up to the point where the amplitude of the digitized conversion result has decreased by 3dB. This point is defined as fullpower input bandwidth frequency.

Chip Information
TRANSISTOR COUNT: 80,000
PROCESS: BiCMOS 0.6 $\mu \mathrm{m}$
Revision History
Pages changed at Rev 3: 1, 3, 23, 27

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

8－／4－／2－Channel，14－Bit，Simultaneous－Sampling ADCs

 with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$ ，and 0 to +5 V Analog Input RangesTypical Operating Circuits（continued）

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to +5 V Analog Input Ranges

TOP VIEW

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and 0 to $\mathbf{+ 5 V}$ Analog Input Ranges

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

